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Abstract. The evolution of a harmonic oscillator in a photon reservoir is described by a 
quantum stochastic differential equation via the Wigner-Weisskopf approximation. The 
rotating wave approximation is shown to be equivalent to the requirement of quantum 
detailed balance and the irreversible evolution of the initial equilibrium state is explicitly 
computed. 

1. Introduction 

We consider the interaction of a single harmonic oscillator with an environment 
composed of several independent oscillators in thermal equilibrium. The interaction 
Hamiltonian contains both energy interchange and virtual-particle production terms. 

The Wigner-Weisskopf approximation has the effect of replacing the environment 
by a finite-temperature free boson field. The dynamics of the interaction is then 
described by a unitary operator valued stochastic process which obeys a quantum 
stochastic differential equation [ 6 ] .  This can be regarded as an intrinsically quantised 
generalisation of a stochastic differential equation of Ito type with respect to Brownian 
motion. In our case, the role of Brownian motion is played by a process composed 
of annihilation and creation operators which describe (respectively) energy losses and 
gains by the environment. 

Just as in the classical case, where coarse graining of the process yields an irreversible 
evolution for the averages generated by a semi-elliptic partial differential operator, so 
in our case, when we average out the effects of the environment, we obtain a quantum 
dynamical semigroup describing the reduced evolution of the oscillator. 

Our main result is the derivation of a formula describing the reduced evolution of 
the state of the oscillator under arbitrary ‘weights’ associated with energy interchange 
and virtual-particle production terms in the interaction Hamiltonian. We find that if 
both these terms appear with equal weight, then the semigroup drives the oscillator 
towards a state of ‘infinite temperature’. As in the case of the two-level atom [3], the 
initial state of thermal equilibrium is preserved by the reduced dynamics if and only 
if all virtual-particle production terms are absent in the interaction Hamiltonian (i.e. 
the ‘rotating wave approximation’ [ 13 is imposed). 

t Supported by SERC Grant No GR/D/51292. 
$ Supported by an SERC Research Studentship. 
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2. Description of the oscillator and its environment 

We consider an assembly of ( n  + 1) independent harmonic oscillators described by the 
Hamiltonian 

n 

H = w,uJ'aJ 
, = O  

acting on boson Fock space over Cn+' where each w, > 0 (0  j 4 n )  and a, and U; are 
the annihilation and creation operators (respectively) associated to the j th  oscillator. 
These satisfy the discrete form of the CCR relations 

[a,, G I =  0 L a ] ,  = ' J k Z  Osj, k <  n. (1) 

The system is initially in the equilibrium state described by the Gibbs density 
operator 

where p is an inverse temperature parameter and Zn+l = Tr(e-PH)f. 

complex Hilbert space h. Making the natural identification 
In general, we will use the notation T(h) to denote boson Fock space over the 

we have 

H = Ho+ H E  P = P O O P E  

where 

Ho = woa&zo@ I po= (e-PHo/Zo)@Z 

HE = I 0  .;a, p E  = - I 0 e-PHE. 
n 1 

, = I  zn 
We may now regard our set-up as describing, for example, the siting of one mode 

of a laser field within the reservoir provided by its pumping mechanism (see, e.g., 
[ 1 , 2 ] ) .  To describe the field-reservoir interaction, we introduce the Hamiltonian 

where gj E C (1 S j s n) are coupling parameters, E and q are non-negative constants 
and we have suppressed the tensor product signs for notational convenience. We note 
that (3) is the most general bilinear interaction between the systems. The interaction 
Hamiltonian for the laser-reservoir model is as in (3) with E = q = 1. Subsequently 
the analysis of [ 11 introduces the 'rotating wave approximation', which amounts to 
putting E = O  in (3), thus eliminating those terms in H ,  which fail to commute with 
the total number operator. We will not implement this procedure here and the role 
of the constants r ]  and E is to keep track, in the following, of the 'rotating wave' and 
'anti-rotating wave' terms, respectively. 

t We work in a system of units wherein Planck's constant has value 2n and Boltzmann's constant is 1. 
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3. Approximation of the interaction dynamics by a stochastic evolution equation 

Working in the interaction picture, we aim to describe the evolution of our system by 
means of a family of unitary operators { W(t) ,  t S O }  on r(C)@r(@") satisfying the 
differential equation 

W(0) = I 

i.e. 

d W ( t ) / d t = - i W ( t ) K ( t )  

W(0) = I 
(5) 

where 

K ( t ) =  G(t) 'F( t )+G(t)F(t) '  

with 

G ( t ) =  qa exp(iw,t)+&a'exp(-iw,t) 

and 
n 

F ( t )  = C g, exp(-iw,t)a, t 2 0. 
] = I  

A standard technique for obtaining approximate solutions to (5) is to introduce the 
Wigner-Weisskopf approximation wherein we assume that all the g, are close to a 
common value (which we take to be 1) and the wJ are distributed over a wide frequency 
range. The effect of the approximation is to replace the atomic reservoir with a system 
which has infinitely many degrees of freedom so that { F (  t ) ,  Ft( t ) ,  t 2 0} behaves like 
'quantum white noise'. The analysis is identical to that of [3] for a two-level atom in 
a radiation field (see also [4,5]).  

Specifically, (5) is approximated by the quantum stochastic differential equation 
(SDE) [61 

d @ ( t )  = @(t)(-iG'(t)  d A - i G ( t )  dA')-$(A2G'(t)G(t)+fp2G(t)G(t)') d t  
(6) 

@(O) = I 

where 

dA and dA' are stoc)astic differentials of quantum Brownian motion of variance 
U* = A' + p2  [7] and { W( t ) ,  t 3 0) are a family of unitary operators on H = I-(@) 0 Hnoise 
where 

HnoiSe= r(L2(rW))@r(L2(rW)). 

(If  h is a complex Hilbert space, we use the notation 
As in [3], we enlarge theAdynamics as given by (6) to include the free evolution 

on T(C)  by writing U ( t ) =  W ( t ) V ( t )  where V(t)=exp(itH,).  For convenience, we 

to denote its dual.) 
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also transform the quantum noise to the equivalent form dA -$ i dA, dA' + -i dA'. We 
then obtain 

D Applebaum and P Robinson 

d U ( r ) =  U ( t ) [ G t  d A - G d A t + ( i H o - f A 2 G ' G - ~ p 2 G G t )  dt ]  
(7) 

U ( 0 )  = I 

where G = G(0) (cf [6,7]). 

4. Omstein-Uhlenbeck type behaviour of the evolution 

Let a(  t )  = U (  t ) a o U (  t ) ' (  t 3 0). We obtain, by stochastic differentiation, the SDE 

d a  = E dAt - 77 dA - [ i wo + +( 772 - &')]a d t  (8) 

whose solution is given by 

where, for t 3 0, 0 S T s t ,  

g,( 7) = exp{ -[i WO++( 7' - E')]( t - T ) } .  (10) 

If we make the rotating wave approximation ( E  = 0), (9) is the quantum Omstein- 
Uhlenbeck process of [6,8,17].  The anti-Omstein-Uhlenbeck process of [6] is obtained 
by taking 77 = O  in (9). 

Noting that d X  = -i(dA - dA') is a realisation of classical Brownian motion, we 
obtain in (9) for the case E = 7 = 1, 

a (  t )  = exp(-i wot)ao  - i exp[-i wo( t - T ) ]  dX I,' 
which is reminiscent of a classical Omstein-Uhlenbeck process [9] in imaginary time. 

For f~ L* (R) ,  we define operators in HnoiSe 

where a ( f )  and a'(f) are annihilation and creation operators, respectively, in r( L ' (R) ) .  
( In  general, if T is an operator on h, is that operator on k for which Tf = Tf, for 
f i n  the domain of T.) The operators (12) satisfy the boson commutation relations [lo], 

-- - 

[ A ( f ) ,  Ah?)]= 0 [A( f ) ,  At (g ) l  = (f, g ) I  (13) 

for each f; g E L ' (R) ,  with the maps f+ A(f) ,  f+ At( f )  being conjugate-linear and 
linear (respectively). 

We note [7] that dA and dAt are the differentials of A(xro., ,)  and A'(xLo,,,) 
respectively (where xA is the indicator function of the subset A c R) and we will use 
below the fact that we can write (9) in the form 

(14) a ( t ) = g, (0) 00 + At( E8,X[O,, 1 )  - A( 778,X[O,, 1).  
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We will also need some facts about Weyl operators. These are a family of unitary 
operators { W ( f ) , f ~  h } ,  where h is a complex Hilbert space, acting on a complex 
Hilbert space h and satisfying the relations [lo] 

5. Description of the reduced dynamics 

Let N be the von Neumann subalgebra of B(HnoISe) generated by { W ( f ) , f ~  L 2 ( R ) } .  
We define the vacuum conditional expectation E,:  B ( r ( @ ) ) @ N  + B(T(@)) by con- 
tinuous linear extension of 

E,(XO ~ ( f ) )  = exp(-fa211fl12)X (18) 

for X E B(T(C)) [7]. 
The prescription 

T,(X) =Eo( U ( t ) X U ( r ) + )  (19) 

yields a completely positive, identity preserving one-parameter semigroup {TI, t 3 0} 
of operators in B( h,) [6 ,7]  whose infinitesimal generator is given by 

L ( X )  = i[ H,, X] + A '[ GtXG -;{ G t G ,  X}] + p2[ GXG' -f{ GG', X}] (20) 
for X E B(T(@)) (cf [ i l l ) .  

the reservoir. 
We regard this semigroup as a description of the diffusion of the oscillator through 

Let wo be the state on B(I ' (C))  given by 

wo( X )  = Tr p o x  x E B(r(c)). (21) 

We investigate the conditions under which wo is left invariant by the semigroup action, 
i.e. 

w o ( T , ( X ) )  = w d X )  V t 2 O  

X E B(T(C)). A necessary and  sufficient condition [ 151 for this is that the semigroup 
satisfies the quantum detailed balance condition of [12] with respect to wo,  i.e. there 
exists another semigroup { T:, f 2 0) on B(I ' (C) )  such that 

W O ( C ( X )  Y )  = W,(XTl( Y ) )  

L ( X )  - L ~ ( x )  = 2 i [ ~ , ,  X I  

for all t 2 0, X ,  Y E  B(T(C)) and  

for all X E B(T(C)) where Lt is the infinitesimal generator of { T:, t 3 0). 
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In our case, the particular form of L (given by (20)) ensures that the quantum 
detailed balance condition is equivalent to the requirement [ 131 that 

V(r)GV(t)*=exp(itpw,)G E = O  

i.e. the rotating wave approximation is made. 

evolution {w,, f 2 0 )  where for t 20,  X E B(T(@)) we define 
Since wo is not left invariant by the semigroup in general, we compute its time 

w,  ( X )  = Tr p , X  

= Tr( T T p ) X  

= Tr p T , ( X )  (22) 

where { TF, t 3 0} is a positive trace-preserving semigroup on the Banach space of trace 
class operators on T(C). 

Since { W(z),  Z E  C} acts irreducibly on T(C),  it is sufficient to compute (22) on this 

by (14) 

by (16) and (17) 

by (18). 

-2w,{sin 28  -exp[-(q2 - ~ * ) r ]  sin 2(8 + w , t ) } j  . (26) 

Each state w ,  ( t  > O ) ,  although quasi-free, is no longer gauge invariant [ 101. Note that 
if we put E = 0 in (26) we obtain a( t )  = a, for all t z 0 as we expect from the validity 

) 
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of quantum detailed balance in this case. In general, the sequence of states ( w , ,  t z 0) 
converges (in the weak * topology) to w,  where 

U,( W(z))  = exp(-tu,lzl*) 

where 

2rlE [ ( ~ 2 - ~ 2 ) ~ ~ ~ 2 8 - 2 w o s i n 2 8 ]  

(ii) For E = 7, f 2 0 

(28) 

Again, the quasi-free states ( w , ,  f > 0) are not gauge invariant, convergence in this 

) v 2  a(t)2 = U’ 1 +2rl2f+- [sin 2 ( 8 +  wOt) -sin 281 . ( WO 

case being to the (infinite-temperature) central state 

The expressions c+(r)* in (26) and (28) and a: in (27) cannot be read as variances of 
the characteristic functionals U,( W(z))  and  U,( W(z) )  owing to their specific depen- 
dence on z through 8. 

The passage from equations ( 5 )  to (6) is essentially a singular coupling limit [ 131. 
In this regard it is interesting to compare (26) and (28) with the results obtained in 
[14] where the weak coupling limit is taken. 

We note that the quantum stochastic process arising from (7) satisfies the Markov 
property [ 151 in contrast to the model considered in [ 161. 
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